Sem-I-Phy-CC-I(R&B)

No. of Printed Pages : 4

2023

Time - 3 hours

Full Marks - 60

Answer **all groups** as per instructions. Figures in the right hand margin indicate marks.

GROUP - A

- Answer <u>all</u> questions and fill in the blanks as required. [1 × 8
 - (a) The angle between $2\hat{i} + \hat{j} \hat{k}$ and $\hat{i} \hat{j} + \hat{k}$ is _____.
 - (b) Does the f(x) = | x | is continuous as well as differentiable at x = 0 ? (Yes / No / Cannot say)
 - (c) The second term in the binomial expansion of $(1 x)^{-1}$ is

(d) The value of $f(x) \delta(x - a)$ is _____.

(e) If $\vec{\nabla}$, $\vec{A} = 0$, then \vec{A} is called ______ vector.

(f) If u = y and v = x, then Jacobian $J\left(\frac{u, v}{x, y}\right)$ is _____.

- (g) The normal derivative of a scalar function is obtained by its
- (h) The Stoke's theorem based on conversion of volume integral to surface integral. (True / False)

<u>GROUP - B</u>

- 2. Answer <u>any eight</u> of the following within two or three sentences each. $[1\frac{1}{2} \times 8]$
 - (a) Evaluate curl $\phi \vec{A}$?
 - (b) Find the first order derivative of $f(x) = x^{\sin x}$.
 - (c) If \vec{a} is a constant vector, then show that $\vec{\nabla}(\vec{r} \cdot \vec{a}) = \vec{a}$.
 - (d) Sketch the function y = tan x without graph paper using scale on the axis.
 - (e) Evaluate $\vec{\nabla}(\mathbf{r}^n)$.
 - (f) Prove that $\vec{\nabla}(\phi + \psi) = \vec{\nabla}\phi + \vec{\nabla}\psi$ where ϕ and ψ are scalar fields.
 - (g) Evaluate scale factors in circular cylindrical co-ordinate system.
 - (h) Find the unit normal vector to both $(\hat{i} \hat{j} + \hat{k})$ and $(2\hat{i} + \hat{j} + \hat{k})$.

(i) Prove that
$$\delta(ax) = \frac{\delta(x)}{|a|}$$
.

(j) State Green's theorem.

GROUP - C

- 3. Answer any eight of the following within 75 words each. [2 × 8
 - (a) Define the Jacobian for transformation from Cartesian to spherical polar co-ordinates.
 - (b) Solve $2dx + \sec x \cos y \, dy = 0$ when y(0) = 0.
 - (c) Find the torque of force $\vec{F} = -3\hat{i} + \hat{j} + 5\hat{k}$ acting at (1, 3, -2) about origin.
 - (d) Obtain Taylor's series of cos x about origin.
 - (e) Does this equation y dx x dy = xy³ dy is exact ? If yes, solve it. If not, make it exact and solve.
 - (f) Prove that $\vec{\nabla} (\vec{\nabla} \times \vec{A}) = 0$.
 - (g) Transform $\vec{A} = r\hat{e}_r + r\hat{e}_{\theta}$ from cylindrical co-ordinate to Cartesian co-ordinate.
 - (h) Find the equation of tangent plane to the surface $x^2 + y^2 z^2 = 4$ at the given point (-1, 2, 1).

- (i) Discuss about Wronskian.
- (j) Express $\vec{\nabla}$ in spherical polar co-ordinate.

GROUP - D

[4]

Answer any four questions within 500 words each.

Discuss the properties of vector under rotation.

5. Solve
$$\sin^2 x \frac{d^2 y}{dx^2} - 2y = 0$$
. [6]

6. Find the equation of the tangent plane and normal line to the surface $x^2y + xz^2 = z - 1$ at the point (1, -3, 2). [6

[6

7. Find ∇^2 in spherical polar co-ordinate.

- Establish the physical significance of divergence of a vector function.
- 9. The temperature at any point is given by scalar function T = 400 xyz^2 . Find the maximum temperature on the surface of unit sphere $x^2 + y^2 + z^2 = 1$. [6]
- Express velocity and acceleration in circular cylindrical co-ordinates.